Journal of Organometallic Chemistry, 441 (1992) 295–308 Elsevier Sequoia S.A., Lausanne JOM 22869

Zweikernige Rutheniumcluster mit $\mu_2 - \eta^2$ -Sulfonatoliganden. Synthese und Molekülstruktur von Ru₂(CO)₄[$\mu_2 - \eta^2$ -OOS(O)Tol]₂(PPh₃)₂

Gerd Rheinwald, Helen Stoeckli-Evans und Georg Süss-Fink

Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel (Schweiz) (Eingegangen den 17. März 1992)

Abstract

Dodecacarbonyltriruthenium reacts with sulphonic acids to give dinuclear ruthenium complexes containing μ_2 - η^2 -sulphonato bridges. The triphenylphosphine derivatives $\operatorname{Ru}_2(\operatorname{CO})_4[\mu_2-\eta^2-\operatorname{OOS}(\operatorname{OR}]_2(\operatorname{PPh}_3)_2$ (1: R = CF₃; 2: R = Me; 3: R = Et; 4: R = (+)-Camph; 5: R = Ph; 6: R = Tol) have been isolated and characterized; the molecular structure of 6 has been established by a single-crystal X-ray structure analysis. Compound 6 crystallizes in two different space groups: in the space group A2/n (a 17.602(2), b 16.659(2), c 20.5234(2) Å, β 106.57(1)°, Z = 4) with crystallographic C_2 symmetry, and in the space group $P2_1/n$ (a 17.566(1), b 15.539(1), c 37.889(4) Å, β 93.84(1)°, Z = 8) with two independent molecules (I and II) per asymmetric unit. The two ruthenium atoms are bridged by the two sulphonato ligands, the average Ru-Ru distance being 2.776(1) Å for the three conformers. The CO groups are *trans* with respect to the bridging ligands, giving rise to a sawhorse-like structure.

Zusammenfassung

Dodecacarbonyltriruthenium reagiert mit Sulfonsäuren zu zweikernigen Komplexen mit $\mu_2 \cdot \eta^2$ -Sulfonatobrücken. Die Triphenylphosphinderivate Ru₂(CO)₄[$\mu_2 \cdot \eta^2$ -OOS(O)R]₂(PPh₃)₂ (1: R = CF₃; 2: R = Me; 3: R = Et, 4: R = (+)-Camph, 5: R = Ph, 6: R = Tol) wurden isoliert und charakterisiert; die Molekülstruktur von 6 wurde durch Röntgenstrukturanalyse aufgeklärt. Verbindung 6 kristallisiert in zwei unterschiedlichen Raumgruppen, in der Raumgruppe A2/n, a 17.602(2), b 16.659(2), c 20.534(2) Å, β 106.57(1)°, Z = 4, das Molekül besitzt kristallographische C₂-Symmetrie, sowie in der Raumgruppe $P2_1/n$, a 17.566(1), b 15.539(1), c 37.889(4) Å, β 93.81(1)°, Z = 8, mit zwei unabhängigen Molekülen pro asymmetrischer Einheit. Die zwei Rutheniumatome werden von den zwei Sulfonatogruppen überbrückt; die durchschnittliche Ru-Ru-Bindungslänge beträgt 2.776(1) Å für die drei Konformere. Die CO-Gruppen stehen *trans* zu den Brückenliganden und ergeben eine sägebock-ähnliche Struktur.

Einleitung

Zweikernige Rutheniumkomplexe mit $\mu_2 \eta^2$ -Brückenliganden wurde erstmals 1969 von Lewis *et al.* durch Thermolyse von Dodecacarbonyltriruthenium in

Correspondence to: Prof. G. Süss-Fink.

Carbonsäuren synthetisiert. Die entstehenden polymeren Verbindungen bestehen aus dimeren Ru₂-Einheiten, die von Carboxylatobrücken überbrückt werden [1]. Die Struktur der dimeren Einheiten wurden von Schumann et al. [2] gelöst. Die Verknüpfung der dimeren Einheiten erfolgt über die Sauerstoffatome der Carboxvlatoeinheiten durch Ausbildung von Ru-O-Bindungen [3,4]. Endgültig konnte die Struktur der polymeren Verbindungen von Strähle et al. durch eine Röntgenstrukturanalyse des polymeren $[Ru_2(CO)_4(\mu_2 - \eta^2 - OOCPh)_2]_n$ bewiesen werden [5]. Die Depolymerisierung der Ketten, die von Piacenti et al. systematisch untersucht wurde, gelingt sowohl mit koordinierenden Lösungsmitteln, als auch mit Phosphinen, Arsinen unter Bildung der Zweikernkomplexe $\operatorname{Ru}_2(\operatorname{CO})_4(\mu_2-\eta^2-\operatorname{OOCR})_2(L)_2$ $(L = THF, MeCN, PPh_3, AsPh_3)$ [6]. Homogenkatalytisch aktive Komplexe zur enantioselektiven Hydrierung können durch Einsatz von chiralen Carbonsäuren und chiralen Phosphinen synthetisiert werden [7,8]. Weitere Klassen leicht zugänglicher, chelatverbrückter Zweikernkomplexe stellen die Pyrazolato- [9,10], Carbamovlato- [11] und Phosphinato-Komplexe [12] dar. Wir berichten hier erstmals über die Synthese und Charakterisierung sulfonatoverbrückter Dirutheniumkomplexe.

Ergebnisse und Diskussion

Dodecacarbonyltriruthenium, Ru₃(CO)₁₂, reagiert mit der äquimolaren Menge an Sulfonsäure und Triphenylphosphin zu dem dimeren Ru₂(CO)₄[μ_2 - η^2 -OOS(O)-R]₂(PPh₃)₂ (1: R = CF₃, 2: R = Me, 3: R = Et, 4: R = (+)-Camph, 5: R = Ph, 6: R = Tol). Die Synthese der Verbindungen 1 bis 6 wird in THF-Lösung im Druckschlenkrohr durchgeführt. Man erhält eine orange bis orangerot gefärbte Lösung der Solvensaddukte Ru₂(CO)₄[μ_2 - η^2 -OOS(O)R]₂(THF)₂, die mit PPh₃ zu den Komplexen 1–6 abreagieren. Durch Kristallisation der Produkte aus CH₂Cl₂/ Pentan (1,3–6), bzw. THF/Hexan (2) bei 20°C werden die Verbindungen in analysenreiner Form erhalten.

Die Infrarotspektren von 1-6 zeigen im Bereich terminaler Carbonylliganden das typische Absorptionsmuster der Ru₂(CO)₄-"Sägebockeinheit", wie es auch für carboxylatoverbrückte Komplexe Ru₂(CO)₄(μ_2 - η^2 -OOCR)₂L₂ [1], carbamoylatoverbrückte Komplexe Ru₂(CO)₄(μ_2 - η^2 -HNOCR)₂L₂ [11] und phosphinatoverbrückte Ru₂(CO)₄(μ_2 - η^2 -OOPR₂)₂L₂ [12] Komplexe gefunden wird. Bei *ca*. 1260 cm⁻¹ findet man die ν (S=O)-Streckschwingung in leicht wechselnder Intensität. Die Schwingungen der verbrückenden Säuregruppe sind wegen der in der gleichen Region liegenden Resonanzen der aromatischen Ringe nicht einwandfrei zuzuordnen.

Wegen der tetraedrischen Grundstruktur der Sulfonsäuren erwartet man die Bildung von drei Isomeren, die sich aus der unterschiedlichen Stellung der Sulfonatobrücken am $Ru_2(CO)_4$ -Gerüst ergeben, und die sich in den NMR-Spektren unterscheiden müßten. Für die Isomeren des Typs A mit gleichsinnig orientierten Substituenten an den beiden Sulfonatobrücken ist jeweils ein Signalsatz zu erwarten, während die Isomeren B zwei Signalsätze für die unterschiedlich orientierten Reste R zeigen müssen (Fig. 1). Im ¹H-NMR-Spektrum der Verbindungen 5 und 6 findet man einen Signalsatz, der auf die Bildung nur eines Isomeren hindeutet, was durch die Röntgenstrukturanalyse von 6 bestätigt wird. Bei den Verbindungen 1–3 findet man jedoch im ¹H-NMR-Spektrum (2,3) und im

Isomer A

Isomer B

 $R = CF_3$ (1), CH_3 (2), Et (3), (+)-Camph (4)

Fig. 1. Isomere der Komplexe 1-4.

¹⁹F-NMR-Spektrum (1) nicht nur die Signalgruppe für die zu 6 analoge Struktur, sondern auch noch eine zweite Signalgruppe, die die Anwesenheit eines weiteren Isomeren beweist. So findet man für 1 und 2 drei gut definierte Singuletts für die CF₃- bzw. CH₃-Gruppe, und für 3 einen Satz von drei, sich leicht überlagernden Tripletts für die Methylgruppen und drei gut separierte Quartetts für die Methylengruppen (Tab. 1). Das Verhältnis der Isomeren A und B variiert leicht (1: 41% A, 59% B; 2: 53% A, 47% B; 3: 56% A, 44% B). Im Fall von 4 ist wegen der komplexen Struktur des ¹H-NMR-Spektrums die Zuordnung der Signale nicht möglich. Die Isolierung der Isomeren durch Kristallisation oder Tieftemperatur-Säulenchromatographie gelang nicht. Der Einsatz der Dünnschichtchromatographie scheitert an der Luftempfindlichkeit der Verbindungen in Lösung.

Kristallstruktur von $Ru_2(CO)_4[\mu_2 - \eta^2 - OOS(O)Tol]_2(PPh_3)_2$ (6)

Die Verbindung 6 kristallisiert in den Raumgruppen A2/n (Fig. 2) und $P2_1/n$. Die $Ru_2(CO)_4$ -Einheiten werden durch zwei Sulfonatoliganden überbrückt, die CO-Gruppen stehen trans zu den Sulfonatoliganden. Jedes Ruthenjumatom befindet sich in einer annähernd oktaedrischen Umgebung; der Abstand der Rutheniumatome liegt mit 2.774(1) Å (A2/n, Tab. 2) bzw. 2.776(1) Å (Molekül 1, Tab. 3) und 2.777(1) Å (Molekül II, Tab. 4) $(P2_1/n)$ im üblichen Bereich für zweikernige Rutheniumkomplexe wie $\operatorname{Ru}_2(\operatorname{CO})_4(\mu_2 - \eta^2 - \operatorname{OOC}^n \operatorname{Pr})_2(\operatorname{P}^1 \operatorname{Bu}_3)_2$ [2] (2.728(1) Å), $\operatorname{Ru}_2(\operatorname{CO})_4(\mu_2 - \operatorname{Br})_2(\operatorname{P}^1 \operatorname{Bu}_3)_2$ [13] (2.672(2) Å), $\operatorname{Ru}_2(\operatorname{CO})_6(\mu_2 - \eta^2 - \eta^2 - \eta^2)_2$ OOCPh)₂ [5] (2.704(1) Å), $Ru_2(CO)_6(\mu_2 - \eta^2 - 3.5 - Me_2 pz)_2$ [10] (2.705(2) Å). Die Brückenliganden sind leicht verdrillt, der kleinere Torsionswinkel beträgt - 59.8° (O1-Ru1-Ru1a-O1a, A2/n), bzw. -59.3° (O1-Ru1-Ru2-O5, Molekül I) und -63.0 (O1-Ru1-Ru2-O5, Molekül II) ($P2_1/n$). Die Ru-P-Bindung des PPh₃-Liganden ist um ca. 4° (A2/n), bzw. ca. 7 und 9° $(P2_1/n)$ von der Ru-Ru-Achse weggebogen. Der wichtigste Unterschied zwischen den beiden Modifikationen besteht in der unterschiedlichen Orientierung der Tolylringe im Molekül, die Verdrillung der Sulfonatoliganden ist annähernd identisch. Im Gegensatz zu den Verhältnissen in der Raumgruppe A2/n stehen die Tolylringe in der Raumgruppe $P2_1/n$ nicht parallel zueinander. Der Winkel der Tolylringe zu einer durch die

IR- und NMR-	spektroskopische Datei	n der Verbindungen 1–6				
		2	3	4	5	9
IR ^a v(CO)	2046vs, 2004m, 1978vs	2037vs. 1994m. 1964vs	2036vs. 1994m. 1964vs	2037vs. 1994m. 1965vs	2038vs. 1995m. 1966vs	20137vs 1994m 1966vs
ہ(OS) ⁴	1294s	1263s	1267s	1746m 1263s	1260s	1263s
NMR ⁶ 8(CH, PPh3)	7.42(m)	7.49(m. 32H). 7.40(m.	7.50 (m. 246H). 7.39 (m.	751 (m. 2H), 738 (m.	7 48 (dd ^{. 3} 1(PH) 12 1	7.48 (dd ³ 1(PH) 11.4
i i	.	48H)	369H)	3H)	J(HH) 5.4, 6H), 7.36 (t, J(HH) 7.2,	J(HH) 5.4, 6H), J(37 (t, J(HH) 7.1,
					3H), 7.29 (t, J(HH) 7.4, 6H)	3H), 7.30 (t, J(HH) 7.2, 6H)
δ(CH _{ar})					6.88 (m, 5H)	6.77 (d, J(HH) 8.1, 2H), 6.64 (d, J(HH)
						7.1, 2H)
8(CH ₂)			2.72 (q, J(HH) 7.3, 18H) 2.66 (q, J(HH) 7.4, 18H)	mehrere Multipletts im Bereich von 0.6–3.5		
			2.50 (q, J(HH) 7.4, 46H)	gesamt 5H		
8(CH3)			0.96 (t, J(HH) 7.3, 27H)			2.24 (s, 3H)
			0.92 (t, J(HH) 7.4, 27H) 0.89 (t, J(HH) 7.4, 69H)			
δ(CF ₃)	39.7 (s, 13F), 39.3 (s,	2.57 (s, 4H), 2.55 (s,				
	13F), 38.9 (s, 18F)	4H), 2.25 (s, 9H)				
^a In CH ₂ Cl ₂ (c	m ⁻¹). ^b KBr-Pressling	(cm ⁻¹). ^c In CDCl ₃ (bei	Isomerengemischen auf g	ganze Zahlen berechnet)	(8 in ppm; J in Hz).	

I

i

ι I

ſ

i ł

1

I

1

2 Ĺ i

Tabelle 1

298

Fig. 2. SCHAKAL-Plot von 6 (Raumgruppe A2/n), Blick seitlich auf die Ru-Ru-Achse.

Tabelle 2

Wichtige Bindungsabstände (Å) und -winkel (°) in 6 (Raumgruppe A2/n)

Ru(1)-Ru(^a)	2.774(1)	O(2)-S(1 ^a)	1.481(6)
Ru(1)-P(1)	2.450(2)	C(1)-C(2)	1.349(14)
Ru(1)-O(1)	2.149(6)	C(1)-C(6)	1.383(14)
Ru(1)-O(2)	2.168(6)	C(2)–C(3)	1.432(16)
Ru(1)-C(26)	1.840(10)	C(3)-C(4)	1.404(20)
Ru(1)-C(27)	1.828(9)	C(4)-C(5)	1.363(21)
S(1)-O(1)	1.490(6)	C(4)-C(7)	1.525(19)
S(1)-O(2 ^a)	1.481(6)	C(5)-C(6)	1.341(16)
S(1)-O(3)	1.423(6)	C(26)-O(26)	1.142(12)
S(1)-C(1)	1.748(9)	C(27)–O(27)	1.144(11)
Ru(1 ")-Ru(1)-P(1)	175.94(6)	$O(2^{a})-S(1)-O(3)$	113.3(4)
$Ru(1^{a})-Ru(1)-O(1)$	82.39(15)	$O(2^{a})-S(1)-C(1)$	106.6(4)
$Ru(1^{a})-Ru(1)-O(2)$	84.99(15)	O(3) - S(1) - C(1)	108.2(4)
$Ru(1^{a})-Ru(1)-C(26)$	91.8(3)	Ru(1)-O(1)-S(1)	123.1(3)
Ru(1 ^a)-Ru(1)-C(27)	91.6(3)	$Ru(1)-O(2)-S(1^{a})$	124.7(3)
P(1)-Ru(1)-O(1)	94.69(15)	S(1)-C(1)-C(2)	117.4(7)
P(1)-Ru(1)-O(2)	91.81(16)	S(1)-C(1)-C(6)	120.9(7)
P(1)-Ru(1)-C(26)	90.9(3)	C(2)-C(1)-C(6)	121.6(9)
P(1)-Ru(1)-C(27)	91.4(3)	C(1)-C(2)-C(3)	117.9(10)
O(1)-Ru(1)-O(2)	81.85(24)	C(2)-C(3)-C(4)	119.6(11)
O(1)-Ru(1)-C(26)	172.8(3)	C(3)-C(4)-C(5)	118.7(11)
O(1)-Ru(1)-C(27)	93.7(3)	C(3)-C(4)-C(7)	117.8(14)
O(2)-Ru(1)-C(26)	93.4(3)	C(5)-C(4)-C(7)	123.5(14)
O(2)-Ru(1)-C(27)	174.7(3)	C(4)-C(5)-C(6)	121.8(12)
C(26)-Ru(1)-C(27)	90.7(4)	C(1)-C(6)-C(5)	120.2(11)
O(1)-S(1)-O(2 ^a)	111.0(3)	Ru(1)-C(26)-O(26)	178.6(8)
O(1)-S(1)-O(3)	113.0(4)	Ru(1)-C(27)-O(27)	178.7(9)
O(1)-S(1)-C(1)	104.0(4)		

^a Symmetrieoperation: 0.5 - x, y, 0.5 - z.

Wichtige Bindungsabstände (Å) und -winkel (°) in 6 (Raumgruppe $P2_1/n$, Molekül I)

Ru(1)-Ru(2) 2.776(1) C(1)-C(2) 1.367(16) Ru(1)-O(1) 2.445(3) C(1)-C(6) 1.364(16) Ru(1)-O(1) 2.180(7) C(2)-C(3) 1.415(19) Ru(1)-C(51) 1.362(11) C(4)-C(5) 1.363(3) Ru(1)-C(52) 1.828(10) C(4)-C(7) 1.475(22) Ru(2)-P(2) 2.441(3) C(5)-C(6) 1.337(22) Ru(2)-C(53) 1.352(10) C(9)-C(10) 1.323(18) Ru(2)-C(53) 1.353(10) C(10)-C(11) 1.396(15) Ru(2)-C(54) 1.335(10) C(10)-C(14) 1.448(17) S(1)-O(2) 1.457(7) C(11)-C(14) 1.448(18) S(1)-O(2) 1.457(7) C(3)-O(53) 1.127(12) S(2)-O(5) 1.470(8) C(3)-O(53) 1.127(12) S(2)-O(5) 1.470(7) C(3)-O(53) 1.127(12) S(2)-O(6) 1.422(8) C(54)-O(54) 1.136(13) S(2)-O(6) 1.422(8) C(54)-O(54) 1.136(13) S(2)-C(8) 1.772(10) 053.4(5) 1.134(1) <					
Ru(1)-P(I) 2.48(7) C(1)-C(6) 1.364(16) Ru(1)-O(1) 2.180(7) C(3)-C(3) 1.415(19) Ru(1)-C(51) 1.862(11) C(4)-C(5) 1.36(3) Ru(1)-C(52) 1.828(10) C(4)-C(7) 1.475(22) Ru(2)-C(52) 2.441(3) C(5)-C(6) 1.387(22) Ru(2)-C(5) 2.162(6) C(8)-C(13) 1.368(15) Ru(2)-C(53) 1.8352(10) C(1)-C(11) 1.335(18) S(1)-O(2) 1.437(7) C(1)-C(12) 1.370(19) S(1)-O(2) 1.477(7) C(1)-C(13) 1.381(18) S(1)-O(2) 1.477(8) C(52)-O(52) 1.176(12) S(2)-O(4) 1.470(7) C(53)-O(53) 1.127(12) S(2)-O(6) 1.422(8) C(54)-O(54) 1.136(13) S(2)-O(6) 1.422(8) C(54)-O(54) 1.136(13) S(2)-O(6) 1.422(8) C(54)-O(54) 1.136(12) S(2)-O(6) 1.422(8) C(54)-O(54) 1.136(13) S(2)-O(6) 1.422(8) C(54)-O(54) 1.136(13) <td>Ru(1)-Ru(2)</td> <td>2.776(1)</td> <td>C(1)-C(2)</td> <td>1.367(16)</td> <td></td>	Ru(1)-Ru(2)	2.776(1)	C(1)-C(2)	1.367(16)	
Ru(1)-O(1) 2.180(7) C(2)-C(3) 1.415(19) Ru(1)-C(51) 1.36(211) C(4)-C(7) 1.45(3) Ru(1)-C(52) 1.828(10) C(4)-C(7) 1.475(22) Ru(2)-P(2) 2.441(13) C(5)-C(6) 1.337(22) Ru(2)-O(2) 2.160(7) C(8)-C(9) 1.418(17) Ru(2)-C(53) 1.352(10) C(9)-C(10) 1.323(18) Ru(2)-C(53) 1.353(10) C(10)-C(11) 1.35(13) S(1)-O(1) 1.471(7) C(11)-C(12) 1.370(19) S(1)-O(2) 1.457(7) C(11)-C(14) 1.484(19) S(1)-O(1) 1.74(69) C(51)-O(51) 1.136(13) S(2)-O(5) 1.470(7) C(52)-O(52) 1.176(12) S(2)-O(6) 1.422(8) C(54)-O(54) 1.136(13) S(2)-O(6) 1.422(8) C(54)-O(5) 11.13(4) Ru(2)-Ru(1)-O(1) 12.65(7) O(3)-S(1)-C(1) 105.4(5) Ru(2)-Ru(1)-O(1) 82.04(17) O(4)-S(2)-O(5) 11.3(4) Ru(2)-Ru(1)-O(1) 82.04(17) O(4)-S(2)-O(5)	Ru(1)-P(1)	2.445(3)	C(1)-C(6)	1.364(16)	
Ru(1)-O(4) 2.176(7) CG3-C(4) 1.35(3) Ru(1)-C(51) 1.862(11) C(4)-C(5) 1.36(3) Ru(1)-C(52) 1.828(10) C(4)-C(7) 1.475(22) Ru(2)-C(2) 2.160(7) C(8)-C(9) 1.418(17) Ru(2)-C(2) 2.160(7) C(8)-C(13) 1.368(15) Ru(2)-C(53) 1.852(10) C(9)-C(10) 1.323(18) Ru(2)-C(54) 1.433(10) C(1)-C(11) 1.395(18) S(1)-O(1) 1.477(7) C(11)-C(14) 1.448(19) S(1)-O(2) 1.477(7) C(11)-C(14) 1.448(19) S(1)-O(3) 1.424(8) C(12)-C(13) 1.36(13) S(2)-O(4) 1.470(7) C(3)-O(53) 1.127(12) S(2)-O(5) 1.470(7) C(3)-O(53) 1.127(12) S(2)-C(6) 1.422(8) C(5)-O(5) 11.3(4) Ru(2)-Ru(1)-P(1) 172.65(7) O(3)-S(1)-C(1) 105.4(5) S(2)-C(8) 1.727(10) 11.3(6) Ru(1)-C(1) 12.6(4) Ru(2)-Ru(1)-O(1) 82.64(17) O(4)-S(2)-O(6) </td <td>Ru(1)-O(1)</td> <td>2.180(7)</td> <td>C(2)-C(3)</td> <td>1.415(19)</td> <td></td>	Ru(1)-O(1)	2.180(7)	C(2)-C(3)	1.415(19)	
Ru(1)-C(51) 1.862(11) C(4)-C(5) 1.36(3) Ru(1)-C(52) 1.828(10) C(4)-C(7) 1.475(22) Ru(2)-P(2) 2.441(3) C(5)-C(6) 1.387(22) Ru(2)-C(5) 2.162(6) C(8)-C(9) 1.448(17) Ru(2)-C(5) 1.852(10) C(9)-C(10) 1.323(18) Ru(2)-C(5) 1.853(10) C(10)-C(11) 1.358(15) Ru(2)-C(1) 1.471(7) C(11)-C(12) 1.370(19) S(1)-O(1) 1.474(8) C(12)-C(13) 1.381(18) S(1)-C(1) 1.746(9) C(51)-O(51) 1.136(13) S(2)-O(5) 1.470(7) C(3)-O(53) 1.127(12) S(2)-O(5) 1.470(7) C(3)-O(53) 1.127(12) S(2)-O(6) 1.422(8) C(54)-O(54) 1.135(12) S(2)-C(8) 1.772(10) 105.4(5) Ru(2)-Ru(1)-O(1) 82.4(17) O(4)-S(2)-O(5) 111.3(4) Ru(2)-Ru(1)-O(1) 82.4(17) O(4)-S(2)-O(5) 113.3(5) Ru(2)-Ru(1)-O(1) 93.3(3) Ru(2)-Ru(1)-O(1) 93.4(3) Ru(1)-O(1) 93.4(3) Ru(1)-O(1) 93.4(3) Ru(1)-O(1) 93.4(3) Ru(1	Ru(1)-O(4)	2.176(7)	C(3)-C(4)	1.35(3)	
Ru(1)-C(52)1.828(10)C(4)-C(7)1.475(22)Ru(2)-P(2)2.441(3)C(5)-C(6)1.387(22)Ru(2)-C(2)2.160(7)C(8)-C(9)1.418(17)Ru(2)-C(5)2.162(6)C(8)-C(10)1.323(18)Ru(2)-C(53)1.852(10)C(9)-C(10)1.323(18)Ru(2)-C(54)1.835(10)C(10)-C(11)1.395(18)S(1)-O(2)1.457(7)C(11)-C(12)1.370(19)S(1)-O(2)1.457(7)C(11)-C(14)1.484(19)S(1)-O(3)1.424(8)C(12)-C(13)1.381(18)S(1)-C(1)1.746(9)C(51)-O(51)1.136(13)S(2)-O(4)1.477(7)C(53)-O(52)1.176(12)S(2)-O(6)1.422(8)C(54)-O(54)1.135(12)S(2)-C(8)1.772(10)7.265(7)O(3)-S(1)-C(1)105.4(5)Ru(2)-Ru(1)-O(1)82.04(17)O(4)-S(2)-O(6)113.0(5)Ru(2)-Ru(1)-O(1)82.04(17)O(4)-S(2)-O(6)113.0(5)Ru(2)-Ru(1)-O(1)82.04(17)O(4)-S(2)-O(6)113.0(5)Ru(2)-Ru(1)-O(1)82.04(17)O(4)-S(2)-O(6)113.0(5)Ru(2)-Ru(1)-O(1)82.3(18)O(5)-S(2)-C(8)104.8(5)P(1)-Ru(1)-O(4)84.18(19)O(4)-S(2)-C(8)108.0(5)Ru(2)-Ru(1)-C(51)91.9(3)O(5)-S(2)-C(8)108.0(5)P(1)-Ru(1)-O(4)80.03)Ru(1)-O(1)-S(2)125.9(4)O(1)-Ru(1)-O(4)80.03)Ru(1)-O(1)-S(2)113.6(4)P(1)-Ru(1)-C(52)95.8(4)S(1)-C(1)-C(6)129.9(9)O(4)-Ru(1)-C(51)94.5(Ru(1)-C(51)	1.862(11)	C(4)-C(5)	1.36(3)	
$\begin{array}{cccc} Ru(2) = P(2) & 2.441(3) & C(5) = C(6) & 1.87(22) \\ Ru(2) = O(2) & 2.160(7) & C(8) = C(9) & 1.418(17) \\ Ru(2) = C(53) & 1.852(10) & C(9) = C(13) & 1.3568(15) \\ Ru(2) = C(53) & 1.852(10) & C(9) = C(10) & 1.323(18) \\ Ru(2) = C(54) & 1.852(10) & C(10) = C(11) & 1.370(19) \\ S(1) = O(3) & 1.424(8) & C(12) = C(13) & 1.370(19) \\ S(1) = O(3) & 1.424(8) & C(12) = C(13) & 1.381(18) \\ S(1) = C(1) & 1.746(9) & C(51) = O(51) & 1.136(13) \\ S(2) = O(4) & 1.477(8) & C(52) = O(52) & 1.176(12) \\ S(2) = O(5) & 1.477(7) & C(53) = O(53) & 1.127(12) \\ S(2) = O(6) & 1.422(8) & C(54) = O(53) & 1.135(12) \\ S(2) = C(8) & 1.772(10) & \\ Ru(2) = Ru(1) = O(1) & 82.040(7) & O(3) = S(1) = C(1) & 105.4(5) \\ Ru(2) = Ru(1) = O(1) & 82.040(7) & O(4) = S(2) = O(6) & 113.0(5) \\ Ru(2) = Ru(1) = O(1) & 82.040(7) & O(4) = S(2) = O(6) & 113.0(5) \\ Ru(2) = Ru(1) = O(1) & 82.040(7) & O(4) = S(2) = O(6) & 113.0(5) \\ Ru(2) = Ru(1) = O(1) & 82.040(7) & O(4) = S(2) = O(6) & 113.0(5) \\ Ru(2) = Ru(1) = O(1) & 82.040(7) & O(4) = S(2) = O(6) & 113.0(5) \\ Ru(2) = Ru(1) = O(1) & 82.08(18) & O(5) = S(2) = C(8) & 106.3(5) \\ P(1) = Ru(1) = O(4) & 84.18(19) & O(4) = S(2) = C(8) & 106.3(5) \\ P(1) = Ru(1) = O(4) & 89.52(20) & O(6) = S(2) = C(8) & 106.0(5) \\ P(1) = Ru(1) = O(4) & 89.52(20) & O(6) = S(2) = C(8) & 106.0(5) \\ P(1) = Ru(1) = O(4) & 89.52(20) & O(6) = S(2) = C(8) & 106.0(5) \\ P(1) = Ru(1) = O(4) & 89.52(20) & O(6) = S(2) = C(8) & 106.0(5) \\ P(1) = Ru(1) = O(4) & 89.52(20) & O(6) = S(2) = C(8) & 106.0(5) \\ P(1) = Ru(1) = O(5) & 92.3(3) & Ru(1) = O(1) = S(11) \\ O(1) = Ru(1) = O(2) & 93.3(3) & Ru(1) = O(1) = S(11) \\ O(1) = Ru(1) = O(5) & 92.3(3) & Ru(1) = O(1) = C(2) = S(4) \\ O(1) = Ru(1) = O(2) & 88.5(4) & C(1) = C(1) = C(3) \\ P(1) = Ru(2) = O(5) & 82.8(1(8) & C(3) = C(4) = C(7) \\ P(1) = Ru(1) = C(2) & 93.3(3) & C(3) = C(4) = C(7) \\ P(1) = Ru(1) = C(2) & 93.3(3) & C(3) = C(3) = C(3) = C(3) \\ P(1) = Ru(1) = C(2) & 93.3(3) & C(3) = C(3) = C(3) = C(3) \\ P(1) = Ru(1) = C(2) & 93.3(3) & C(3) = C(3) = C(3) = C(3) \\ P(1) = Ru(1) = C(2) & 93.3(3) & C(3) = C(3)$	Ru(1)-C(52)	1.828(10)	C(4)-C(7)	1.475(22)	
$\begin{array}{cccc} Ru(2-O(2) & 2.160(7) & C(8)-C(9) & 1.418(17) \\ Ru(2-O(5) & 2.162(6) & C(8)-C(13) & 1.368(15) \\ Ru(2-C(53) & 1.852(10) & C(9)-C(10) & 1.323(18) \\ S(1)-O(1) & 1.471(7) & C(11)-C(11) & 1.395(18) \\ S(1)-O(2) & 1.457(7) & C(11)-C(14) & 1.484(19) \\ S(1)-O(2) & 1.457(7) & C(11)-C(14) & 1.484(19) \\ S(1)-O(3) & 1.424(8) & C(12)-C(15) & 1.136(13) \\ S(2)-O(4) & 1.470(8) & C(52)-O(52) & 1.176(12) \\ S(2)-O(5) & 1.470(7) & C(53)-O(51) & 1.136(13) \\ S(2)-O(6) & 1.422(8) & C(54)-O(54) & 1.135(12) \\ S(2)-O(6) & 1.422(8) & C(54)-O(54) & 1.135(12) \\ S(2)-C(6) & 1.422(8) & C(54)-O(54) & 1.136(13) \\ Ru(2)-Ru(1)-P(1) & 17.265(7) & O(3-S(1)-C(1) & 105.4(5) \\ Ru(2)-Ru(1)-O(1) & 8.204(17) & O(4)-S(2)-O(6) & 113.0(5) \\ Ru(2)-Ru(1)-O(1) & 8.204(17) & O(4)-S(2)-O(6) & 113.0(5) \\ Ru(2)-Ru(1)-C(51) & 9.19(3) & O(4)-S(2)-O(6) & 113.0(5) \\ Ru(2)-Ru(1)-C(51) & 9.29(3) & O(5)-S(2)-O(6) & 113.0(5) \\ Ru(2)-Ru(1)-C(51) & 9.29(3) & O(5)-S(2)-O(6) & 113.0(5) \\ P(1)-Ru(1)-O(1) & 9.28(18) & O(5)-S(2)-C(8) & 108.0(5) \\ P(1)-Ru(1)-O(1) & 9.28(18) & O(5)-S(2)-C(8) & 108.0(5) \\ P(1)-Ru(1)-O(1) & 9.23(3) & Ru(1)-O(1)-S(1) & 120.6(4) \\ P(1)-Ru(1)-O(4) & 8.10(3) & Ru(1)-O(1)-S(1) & 120.6(4) \\ P(1)-Ru(1)-O(4) & 8.10(3) & Ru(1)-O(1)-S(2) & 124.6(4) \\ O(1)-Ru(1)-O(4) & 8.10(3) & Ru(1)-O(2)-S(2) & 119.3(8) \\ O(1)-Ru(1)-C(52) & 95.8(4) & S(1)-C(1)-C(6) & 119.5(1) \\ O(1)-Ru(1)-C(52) & 175.9(4) & C(2)-C(1)-C(6) & 119.5(1) \\ O(1)-Ru(1)-C(52) & 175.9(4) & C(2)-C(3) & 118.4(13) \\ Ru(1)-Ru(2)-O(2) & 84.25(19) & C(3)-C(4)-C(5) & 110.1(1) \\ P(1)-Ru(1)-C(52) & 95.8(4) & S(1)-C(1)-C(5) & 122.8(14) \\ Ru(1)-Ru(2)-O(5) & 82.3(118) & C(3)-C(4)-C(7) & 119.6(19) \\ Ru(1)-Ru(2)-O(5) & 82.3(118) & C(3)-C(4)-C(5) & 110.1(1) \\ P(2)-Ru(2)-C(53) & 95.2(3) & S(2)-C(8)-C(13) & 119.4(1) \\ O(2)-Ru(2)-C(53) & 95.7(4) & C(1)-C(12) & 115.5(11) \\ O(2)-Ru(2)-C(5) & 95.3(11) & C(3)-C(1) & 122.8(13) \\ O(1)-Ru(2)-C(53) & 95.7(4) & C(1)-C(13) & 122.2(11) \\ O(1)-Ru(2)-C(53) & 95.7(4) & C(1)-C(1) & 125.4(13) \\ O(2)-Ru(2)-C(53) & 95.7(4) & C(1)-C(1) & 122.8(13) \\ O(2)-Ru(2)-C(53) & 95.7(4) &$	Ru(2) - P(2)	2.441(3)	C(5)–C(6)	1,387(22)	
$\begin{array}{cccc} Ru(2)-O(5) & 2.162(6) & C(8)-C(13) & 1.368(15) \\ Ru(2)-C(53) & 1.852(10) & C(9)-C(10) & 1.323(18) \\ Ru(2)-C(54) & 1.855(10) & C(10)-C(11) & 1.395(18) \\ S(1)-O(1) & 1.471(7) & C(11)-C(12) & 1.370(19) \\ S(1)-O(2) & 1.457(7) & C(11)-C(12) & 1.370(19) \\ S(1)-O(3) & 1.424(8) & C(12)-C(13) & 1.381(18) \\ S(1)-C(1) & 1.746(9) & C(51)-O(51) & 1.136(13) \\ S(2)-O(5) & 1.470(7) & C(53)-O(53) & 1.127(12) \\ S(2)-O(5) & 1.470(7) & C(53)-O(53) & 1.127(12) \\ S(2)-O(6) & 1.422(8) & C(54)-O(54) & 1.135(12) \\ S(2)-C(8) & 1.772(10) & \\ Ru(2)-Ru(1)-P(1) & 172.65(7) & O(3)-S(1)-C(1) & 105.4(5) \\ Ru(2)-Ru(1)-O(4) & 82.04(17) & O(4)-S(2)-O(5) & 111.3(4) \\ Ru(2)-Ru(1)-O(1) & 82.04(17) & O(4)-S(2)-O(6) & 113.0(5) \\ Ru(2)-Ru(1)-C(51) & 91.9(3) & O(4)-S(2)-C(8) & 105.3(5) \\ Ru(2)-Ru(1)-C(51) & 91.9(3) & O(4)-S(2)-C(8) & 106.3(5) \\ P(1)-Ru(1)-O(4) & 89.52(20) & O(6)-S(2)-C(8) & 108.0(5) \\ P(1)-Ru(1)-O(4) & 89.52(20) & O(6)-S(2)-C(8) & 108.0(5) \\ P(1)-Ru(1)-O(51) & 92.3(3) & Ru(1)-O(1)-S(1) & 120.6(4) \\ P(1)-Ru(1)-C(51) & 92.3(3) & Ru(1)-O(1)-S(1) & 120.6(4) \\ P(1)-Ru(1)-C(51) & 92.3(3) & Ru(1)-O(1)-S(1) & 122.6(4) \\ O(1)-Ru(1)-C(51) & 92.5(4) & S(1)-C(1)-C(2) & 119.3(8) \\ O(4)-Ru(1)-C(51) & 94.5(4) & S(1)-C(1)-C(2) & 119.3(8) \\ O(4)-Ru(1)-C(51) & 94.5(4) & S(1)-C(1)-C(6) & 120.9(9) \\ O(4)-Ru(1)-C(51) & 94.5(4) & S(1)-C(1)-C(2) & 119.3(8) \\ O(4)-Ru(1)-C(52) & 95.8(4) & S(1)-C(1)-C(2) & 119.3(8) \\ O(4)-Ru(1)-C(51) & 94.5(4) & S(1)-C(1)-C(2) & 119.5(1) \\ Su(1)-Ru(2)-O(2) & 82.8(18) & C(3)-C(4)-C(5) & 122.6(14) \\ Ru(1)-Ru(2)-O(5) & 82.8(18) & C(3)-C(4)-C(5) & 122.6(16) \\ P(2)-Ru(2)-C(53) & 95.7(4) & C(3)-C(4)-C(5) & 122.6(16) \\ P(2)-Ru(2)-C(53) & 95.7(4) & C(3)-C(1) & 125.4(13) \\ O(2)-Ru(2)-C(53) & 95.7(4) & C(3)-C(1) & 125.4(13) \\ O(2)-Ru(2)-C(53) & 95.7(4) & C(1)-C(1) & 122.6(13) \\ O(2)-Ru(2)-C(53) & 95.7(4) $	Ru(2)-O(2)	2.160(7)	C(8)-C(9)	1.418(17)	
$\begin{array}{cccc} Ru(2)-C(53) & 1.852(10) & C(9)-C(10) & 1.323(18) \\ Ru(2)-C(54) & 1.835(10) & C(10)-C(11) & 1.395(18) \\ S(1)-O(1) & 1.471(7) & C(11)-C(12) & 1.370(19) \\ S(1)-O(2) & 1.457(7) & C(11)-C(14) & 1.448(19) \\ S(1)-O(3) & 1.424(8) & C(12)-C(13) & 1.381(18) \\ S(1)-C(1) & 1.746(9) & C(51)-O(51) & 1.136(13) \\ S(2)-O(4) & 1.477(8) & C(52)-O(52) & 1.176(12) \\ S(2)-O(5) & 1.470(7) & C(53)-O(53) & 1.127(12) \\ S(2)-O(6) & 1.422(8) & C(54)-O(54) & 1.135(12) \\ S(2)-C(6) & 1.422(8) & C(54)-O(54) & 1.135(12) \\ S(2)-C(6) & 1.422(8) & C(54)-O(54) & 1.135(12) \\ S(2)-C(8) & 1.772(10) \\ \\ Ru(2)-Ru(1)-O(1) & 82.04(17) & O(4)-S(2)-O(5) & 111.3(4) \\ Ru(2)-Ru(1)-O(4) & 84.18(19) & O(4)-S(2)-O(6) & 113.0(5) \\ Ru(2)-Ru(1)-C(51) & 91.9(3) & O(4)-S(2)-O(6) & 113.0(5) \\ Ru(2)-Ru(1)-C(52) & 92.9(3) & O(5)-S(2)-C(8) & 106.S(5) \\ P(1)-Ru(1)-O(4) & 89.52(20) & O(6)-S(2)-C(8) & 106.S(5) \\ P(1)-Ru(1)-O(4) & 89.52(20) & O(6)-S(2)-C(8) & 106.S(5) \\ P(1)-Ru(1)-O(4) & 89.52(20) & O(6)-S(2)-C(8) & 106.S(5) \\ P(1)-Ru(1)-C(52) & 93.3(3) & Ru(2)-O(1)-S(1) & 122.06(4) \\ P(1)-Ru(1)-C(51) & 172.8(4) & Ru(2)-O(5)-S(2) & 119.9(4) \\ O(1)-Ru(1)-C(51) & 172.8(4) & Ru(2)-O(5)-S(2) & 119.9(4) \\ O(1)-Ru(1)-C(52) & 95.8(4) & C(1)-C(1)-C(2) & 119.3(8) \\ O(4)-Ru(1)-C(52) & 85.5(7) & C(2)-C(3) & 118.4(13) \\ Ru(1)-Ru(2)-P(2) & 173.5(7) & C(2)-C(3) & 118.4(13) \\ Ru(1)-Ru(2)-O(2) & 84.25(19) & C(3)-C(4)-C(5) & 117.0(13) \\ Ru(1)-Ru(2)-O(2) & 84.25(19) & C(3)-C(4)-C(7) & 119.6(19) \\ Ru(1)-Ru(2)-O(2) & 84.25(19) & C(3)-C(4)-C(7) & 119.6(19) \\ Ru(1)-Ru(2)-O(5) & 82.81(18) & C(3)-C(4)-C(7) & 119.6(19) \\ Ru(1)-Ru(2)-O(5) & 92.35(18) & S(2)-C(8)-C(13) & 122.0(14) \\ P(2)-Ru(2)-C(53) & 93.2(3) & C(4)-C(5) & 117.0(13) \\ Ru(1)-Ru(2)-C(53) & 93.2(3) & C(4)-C(7) & 119.6(19) \\ Ru(1)-Ru(2)-C(53) & 93.2(3) & C(4)-C(7) & 119.6(19) \\ Ru(1)-Ru(2)-C(53) & 93.2(3) & C(4)-C(7) & 119.6(19) \\ Ru(1)-Ru(2)-C(53) & 93.2(3) & C(4)-C(5) & 117.0(13) \\ Ru(1)-Ru(2)-C(53) & 93.2(3) & C(3)-C(4)-C(5) & 117.0(13) \\ Ru(1)-Ru(2)-C(53) & 93.2(3) & C(3)-C(4) & 122.0(14) \\ O(2)-Ru(2)-C(53) & 93.2(3) & C(3)-$	Ru(2)-O(5)	2.162(6)	C(8)-C(13)	1.368(15)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ru(2)-C(53)	1.852(10)	C(9) - C(10)	1.323(18)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ru(2)-C(54)	1.835(10)	C(10)-C(11)	1.395(18)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S(1)-O(1)	1.471(7)	C(11)-C(12)	1.370(19)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(1)-O(2)	1.457(7)	C(11)-C(14)	1.484(19)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(1)-O(3)	1.424(8)	C(12)-C(13)	1.381(18)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(1)-C(1)	1.746(9)	C(51)-O(51)	1.136(13)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(2)-O(4)	1.477(8)	C(52)-O(52)	1.176(12)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(2)-O(5)	1,470(7)	C(53) - O(53)	1.127(12)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S(2)-O(6)	1,422(8)	C(54)-O(54)	1.135(12)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S(2)C(8)	1.772(10)			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ru(2)-Ru(1)-P(1)	172.65(7)	O(3)-S(1)-C(1)	105.4(5)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ru(2)-Ru(1)-O(1)	82.04(17)	O(4) - S(2) - O(5)	111.3(4)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ru(2)-Ru(1)-O(4)	84.18(19)	O(4)-S(2)-O(6)	113.0(5)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ru(2)-Ru(1)-C(51)	91.9(3)	O(4) - S(2) - C(8)	105.3(5)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ru(2)-Ru(1)-C(52)	92.9(3)	O(5)-S(2)-O(6)	113.6(5)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(1)-Ru(1)-O(1)	93.28(18)	O(5)-S(2)-C(8)	104.8(5)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(1)-Ru(1)-O(4)	89.52(20)	O(6) - S(2) - C(8)	108.0(5)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(1) - Ru(1) - C(51)	92.3(3)	Ru(1) - O(1) - S(1)	120.6(4)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P(1)-Ru(1)-C(52)	93.3(3)	Ru(2) - O(2) - S(1)	125.9(4)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(1)-Ru(1)-O(4)	81.0(3)	Ru(1) - O(4) - S(2)	124.6(4)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(1)-Ru(1)-C(51)	172.8(4)	Ru(2) = O(5) = S(2)	119.9(4)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(1)Ru(1)-C(52)	95.8(4)	S(1)-C(1)-C(2)	119.3(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(4) - Ru(1) - C(51)	94.5(4)	S(1)-C(1)-C(6)	120.9(9)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(4) - Ru(1) - C(52)	175.9(4)	C(2)-C(1)-C(6)	119.5(11)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(51)-Ru(1)-C(52)	88.5(4)	C(1)-C(2)-C(3)	118.4(13)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ru(1) - Ru(2) - P(2)	173.55(7)	C(2)-C(3)-C(4)	122.6(14)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ru(1)-Ru(2)-O(2)	84.25(19)	C(3)-C(4)-C(5)	117.0(13)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ru(1)-Ru(2)-O(5)	82.81(18)	C(3)-C(4)-C(7)	119.6(19)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ru(1)-Ru(2)-C(53)	91.6(3)	C(5) - C(4) - C(7)	123.3(19)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ru(1)-Ru(2)-C(54)	90.3(3)	C(4) - C(5) - C(6)	122.2(16)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2)-Ru(2)-O(2)	90.82(20)	C(1)-C(6)-C(5)	120.1(14)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2)-Ru(2)-O(5)	92.35(18)	S(2)-C(8)-C(9)	119.9(9)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2)-Ru(2)-C(53)	93.2(3)	S(2)-C(8)-C(13)	120.2(9)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2)-Ru(2)-C(54)	94.1(3)	C(9) - C(8) - C(13)	119.4(10)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2) - Ru(2) - O(5)	81.2(3)	C(8) - C(9) - C(10)	117.5(12)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2)-Ru(2)-C(53)	175.1(4)	C(9)-C(10)-C(11)	125.4(13)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2) - Ru(2) - C(54)	93.1(4)	C(10)-C(11)-C(12)	115.3(11)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(5)-Ru(2)-C(53)	95.7(4)	C(10)-C(11)-C(14)	122.0(13)	
$\begin{array}{ccccc} C(53)-Ru(2)-C(54) & 89.5(4) & C(11)-C(12)-C(13) & 122.2(11) \\ O(1)-S(1)-O(2) & 110.7(4) & C(8)-C(13)-C(12) & 119.8(11) \\ O(1)-S(1)-O(3) & 113.5(5) & Ru(1)-C(51)-O(51) & 176.8(10) \\ O(1)-S(1)-C(1) & 107.5(5) & Ru(1)-C(52)-O(52) & 177.6(9) \\ O(2)-S(1)-O(3) & 113.8(5) & Ru(2)-C(53)-O(53) & 177.9(9) \\ O(2)-S(1)-C(1) & 105.2(3) & Ru(2)-C(54)-O(54) & 179.0(9) \\ \end{array}$	O(5)-Ru(2)-C(54)	171.5(4)	C(12)-C(11)-C(14)	122.6(12)	
$\begin{array}{ccccccc} O(1)-S(1)-O(2) & 110.7(4) & C(8)-C(13)-C(12) & 119.8(11) \\ O(1)-S(1)-O(3) & 113.5(5) & Ru(1)-C(51)-O(51) & 176.8(10) \\ O(1)-S(1)-C(1) & 107.5(5) & Ru(1)-C(52)-O(52) & 177.6(9) \\ O(2)-S(1)-O(3) & 113.8(5) & Ru(2)-C(53)-O(53) & 177.9(9) \\ O(2)-S(1)-C(1) & 105.2(3) & Ru(2)-C(54)-O(54) & 179.0(9) \\ \end{array}$	C(53)-Ru(2)-C(54)	89.5(4)	C(11)-C(12)-C(13)	122.2(11)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(1)-S(1)-O(2)	110.7(4)	C(8)-C(13)-C(12)	119.8(11)	
$\begin{array}{ccccc} O(1)-S(1)-C(1) & 107.5(5) & Ru(1)-C(52)-O(52) & 177.6(9) \\ O(2)-S(1)-O(3) & 113.8(5) & Ru(2)-C(53)-O(53) & 177.9(9) \\ O(2)-S(1)-C(1) & 105.2(3) & Ru(2)-C(54)-O(54) & 179.0(9) \end{array}$	O(1)-S(1)-O(3)	113.5(5)	Ru(1)-C(51)-O(51)	176.8(10)	
$\begin{array}{cccc} O(2)-S(1)-O(3) & 113.8(5) & Ru(2)-C(53)-O(53) & 177.9(9) \\ O(2)-S(1)-C(1) & 105.2(3) & Ru(2)-C(54)-O(54) & 179.0(9) \end{array}$	O(1)-S(1)-C(1)	107.5(5)	Ru(1)-C(52)-O(52)	177.6(9)	
O(2)-S(1)-C(1) 105.2(3) Ru(2)-C(54)-O(54) 179.0(9)	O(2)-S(1)-O(3)	113.8(5)	Ru(2)-C(53)-O(53)	177.9(9)	
	O(2)-S(1)-C(1)	105.2(3)	Ru(2)-C(54)-O(54)	179.0(9)	

Tabelle 4

Wichtige Bindungsabstände (Å) und -winkel (°) in 6 (Raumgruppe $P2_1/n$, Molekül II)

Ru(1)-Ru(2)	2.777(1)	C(1)-C(2)	1.375(16)
Ru(1)-P(1)	2.435(3)	C(1)-C(6)	1.384(15)
Ru(1)-O(1)	2.158(7)	C(2)-C(3)	1.386(17)
Ru(1)-O(4)	2.145(7)	C(3)-C(4)	1.374(19)
Ru(1)-C(51)	1.850(10)	C(4)-C(5)	1.391(21)
Ru(1)-C(52)	1.824(10)	C(4)-C(7)	1.484(18)
Ru(2)-P(2)	2.431(3)	C(5)-C(6)	1.316(18)
Ru(2)-O(2)	2.149(7)	C(8)-C(9)	1.367(15)
Ru(2)-O(5)	2.168(7)	C(8)-C(13)	1.394(15)
Ru(2)-C(53)	1.817(10)	C(9)-C(10)	1.399(17)
Ru(2)-C(54)	1,795(11)	C(10) - C(11)	1.304(22)
S(1)-O(1)	1.480(8)	C(11)-C(12)	1.371(23)
S(1)-O(2)	1.487(7)	C(11) - C(14)	1.562(18)
S(1)-O(3)	1.419(8)	C(12) - C(13)	1.425(18)
S(1)-C(1)	1.766(10)	C(51) - O(51)	1.130(12)
S(2) - O(4)	1.466(8)	C(52) = O(52)	1 158(12)
S(2) - O(5)	1.479(7)	C(53) - O(53)	1.174(13)
S(2)-O(6)	1.433(8)	C(54) - O(54)	1.195(13)
S(2)-C(8)	1.764(10)		11150(10)
Ru(2)-Ru(1)-P(1)	171.33(7)	O(3) - S(1) - C(1)	107.7(5)
Ru(2)-Ru(1)-O(1)	82.92(18)	O(4) = S(2) = O(5)	1107(4)
Ru(2)-Ru(1)-O(4)	85 69(19)	O(4) - S(2) - O(6)	112 4(5)
Ru(2) - Ru(1) - C(51)	91.0(3)	O(4) - S(2) - C(8)	104 9(5)
$R_{u}(2) - R_{u}(1) - C(52)$	92 4(3)	O(5) = S(2) = O(6)	113.8(5)
$P(1) - R_{1}(1) - O(1)$	90 59(19)	O(5) = S(2) = O(8)	105 7(4)
P(1) = Ru(1) = O(4)	87 68(21)	O(6) = S(2) = O(8)	108.7(4)
P(1) = Ru(1) = C(51)	95 1(3)	$B_{11}(1) = O(1) = S(1)$	103.7(3) 122 9(4)
P(1)-Ru(1)-C(52)	93.9(3)	Ru(1)=O(1)=S(1) Ru(2)=O(2)=S(1)	122.9(4) 125 9(4)
O(1) = Ru(1) = O(4)	81 7(3)	Ru(2) = O(2) = S(1) Ru(1) = O(4) = S(2)	125.9(4)
O(1) = Ru(1) = O(51)	173 2(3)	Ru(1) = O(4) = S(2) Ru(2) = O(5) = S(2)	121.3(4)
O(1) = Ru(1) = C(52)	94 1(4)	S(1) = C(1) = C(2)	121.3(4)
O(4) = Ru(1) = C(51)	94.1(4)	S(1) = C(1) = C(2) S(1) = C(1) = C(6)	110 9(9)
O(4) = Ru(1) = C(52)	175 5(4)	C(2) C(1) C(6)	119.0(0)
C(51) = Ru(1) = C(52)	80.2(4)	C(1) C(2) C(3)	119.5(10)
$R_{1}(1) = R_{1}(2) = P(2)$	170 73(7)	C(1) - C(2) - C(3) C(2) - C(3) - C(4)	119.0(11)
Ru(1) = Ru(2) = I(2) Pu(1) = Pu(2) = O(2)	94 55(19)	C(2) = C(3) = C(4)	121.0(11)
Ru(1) = Ru(2) = O(2) Ru(1) = Ru(2) = O(5)	82 04(18)	C(3) = C(4) = C(3)	110.1(10)
Ru(1) = Ru(2) = O(5) Ru(1) = Ru(2) = O(53)	02.04(10)	C(5) - C(4) - C(7)	120.4(13)
Ru(1) = Ru(2) = C(53) Ru(1) = Ru(2) = C(54)	94.4(J) 01 7(2)	C(4) = C(4) = C(7)	123.4(13)
$P(2) P_{11}(2) = O(2)$	91.7(3) 97.29(10)	C(4) = C(5) = C(6)	123.5(12)
P(2) = Ru(2) = O(2) P(2) = Ru(2) = O(5)	07.20(19)	S(2) C(3) - C(3)	120.1(12)
P(2) = Ru(2) = O(3) P(2) = Ru(2) = O(53)	92.70(19)	S(2) = C(3) = C(3)	121.2(8)
P(2) = P(2) - C(53)	93.0(3)	S(2) = C(3) = C(13)	117.5(8)
$\Omega(2) = Ru(2) = O(34)$	93.4(3)	C(9) - C(0) - C(10)	121.5(10)
O(2) = Ru(2) = O(3) O(2) = Ru(2) = O(52)	04.2(3) 179 1(4)	C(8) - C(9) - C(10)	118.4(11)
O(2) = Ru(2) = O(33) O(2) = Ru(2) = O(54)	1/8.1(4)	C(9) = C(10) = C(11)	122.8(13)
O(2) = Ru(2) = O(34) O(5) = Ru(2) = O(52)	95.5(4)	C(10)-C(12)	119.4(12)
O(5) - Ru(2) - C(55) O(5) - Ru(2) - C(54)	94.1(4) 172.9(4)	C(10) - C(11) - C(14)	122.6(15)
C(52) = Ru(2) = C(54)	1/3.0(4)	C(11) = C(12) = C(12)	118.0(14)
O(1) = S(1) = O(2)	00.2(3) 111 1(4)	(11) - ((12) - ((13))	121.7(12)
O(1) = S(1) = O(2)	111.1(4)	U(0) - U(13) - U(12) $P_{10}(1) = O(51) = O(51)$	110.U(11) 179.4(0)
O(1) = S(1) = O(3)	114.3(3)	Ru(1) = C(51) = O(51)	1/8.4(9)
O(1) = O(1) = O(1)	104.3(3)	Ru(1) = C(52) = O(52)	1/8.0(9)
O(2) = O(3) O(2) = O(1) = O(3)	112.1(3)	Ru(2) = C(53) = O(53)	179.0(9)
O(2) = O(1) = O(1)	100.4(3)	Ku(2)-C(34)-O(34)	1/9.3(10)

Fig. 3. SCHAKAL-Plot von 6 (Raumgruppe A2/n, C_2 -Symmetrie), Blick längs die Ru-Ru-Achse.

Schwefelatome und den Mittelpunkt der Ruthenium-Ruthenium-Bindung definierten Ebene beträgt für die Tolylringe in der Raumgruppe A2/n ca. 50.7° (Fig. 3). Die Tolylringe in der Raumgruppe $P2_1/n$ (Fig. 4) stehen zu dieser Ebene

Fig. 4. schakal-Plot von 6 (Raumgruppe $P2_1/n$), Blick längs die Ru-Ru-Achse.

in einem Winkel von *ca.* $110.2^{\circ}/30.2^{\circ}$ (Molekül I) und *ca.* $73.7^{\circ}/126.4^{\circ}$ (Molekül II).

Experimenteller Teil

Alle Arbeiten wurden unter Stickstoff als Schutzgas durchgeführt. Die verwendeten Lösungsmittel wurden nach gängigen Methoden absolutiert und mit N_2 gesättigt. Zur Synthese der Verbindungen 1–6 wurden Druckschlenkrohre eingesetzt, die einem Innendruck von *ca.* 8 bar standhalten. Bei den Sulfonsäuren handelt es sich um käufliche Produkte der Firma Fluka, die ohne weitere Reinigung eingesetzt wurden.

Die IR-Spektren wurden auf einem Perkin–Elmer FT-IR 1720 X, die ¹H-NMR-Spektren auf einem Bruker AMX 400 und das ¹⁹F-NMR-Spektrum auf einem Varian Gemini BB 300 vermessen. Die Elementaranalysen wurden von dem Mikroelementaranalytischen Laboratorium der ETH Zürich angefertigt.

Synthese der Komplexe 1-6

Zu einer Lösung von 0.16 mmol (100 mg) $\operatorname{Ru}_{3}(\operatorname{CO})_{12}$ in 30 ml THF wird 0.47 mmol der entsprechenden Sulfonsäure (1: (41 µl) Trifluormethylsulfonsäure, 2: (30 µl) Methansulfonsäure, 3: (38 µl) Ethansulfonsäure, 4: (117 mg) (+)-Campher-10-sulfonsäure(β), 5: (74 mg) Benzolsulfonsäure, 6: (89 mg) *p*-Toluolsulfonsäure) gegeben und im Druckschlenk für 18 h unter Rühren auf eine Heizbadtemperatur von 100°C (1–3,5), bzw. 120°C (4,6) erhitzt. Nach dem Erkalten der orangefarbenen Reaktionslösung zieht man das Lösungsmittel am Vakuum ab, um flüchtige Reaktionsbestandteile zu entfernen. Der gelborange, feste Rückstand wird in 20 ml THF aufgenommen, mit 0.47 mmol (123 mg) PPh₃ versetzt und 2 h bei 20°C gerührt. Von der klaren, hellgelben Lösung wird das Lösungsmittel abgezogen, der Rückstand wird aus CH₂Cl₂/Pentan (2–6), bzw. THF/Hexan (1) umkristallisiert. 1: Ru₂(CO)₄[µ₂- η^2 -OOS(O)CF₃]₂(PPh₃)₂, orangerote Kristalle, Ausbeute 233 mg (85%), gef.: C, 44.75; H, 2.90. C₄₂H₃₀F₆O₁₀P₂Ru₂S₂ (1136.89) ber.: C, 44.37; H, 2.66%.

2: Ru₂(CO)₄[μ_2 - η^2 -OOS(O)CH₃]₂(PPh₃)₂, gelbe Kristalle, Ausbeute 217 mg (88%), gef.: C, 49.32; H, 4.17. C₄₂H₃₆O₁₀P₂Ru₂S₂ (1028.95) ber.: C, 49.03; H, 3.53%.

3: Ru₂(CO)₄[μ_2 - η^2 -OOS(O)Et₃]₂(PPh₃)₂, gelbe Kristalle, Ausbeute 213 mg (88%), gef.: C, 48.09; H, 3.94. C₄₄H₄₀O₁₀P₂Ru₂S₂ · 0.75 CH₂Cl₂ (1120.70) ber.: C, 47.95; H, 3.73%.

4: $\operatorname{Ru}_{2}(\operatorname{CO})_{4}[\mu_{2}-\eta^{2}-\operatorname{OOS}(O)-(+)-\operatorname{Camphyl}]_{2}(\operatorname{PPh}_{3})_{2}$, gelbe Kristalle, Ausbeute 295 mg (94%), gef.: C, 51.25; H, 4.54. $\operatorname{C}_{60}\operatorname{H}_{60}\operatorname{O}_{12}\operatorname{P}_{2}\operatorname{Ru}_{2}\operatorname{S}_{2}\cdot 1.5$ CH₂Cl₂ (1428.74) ber.: C, 51.70; H, 4.45%.

5: $\operatorname{Ru}_2(\operatorname{CO})_4[\mu_2 - \eta^2 - \operatorname{OOS}(\operatorname{O})\operatorname{Ph}]_2(\operatorname{PPh}_3)_2$, gelbe Kristalle, Ausbeute 253 mg (92%), gef.: C, 52.12; H, 3.60. $\operatorname{C}_{52}\operatorname{H}_{40}\operatorname{O}_{10}\operatorname{P}_2\operatorname{Ru}_2\operatorname{S}_2 \cdot 0.75$ CH₂Cl₂ (1216.79) ber.: C, 52.06; H, 3.44%.

6: $\operatorname{Ru}_2(\operatorname{CO})_4[\mu_2 - \eta^2 - \operatorname{OOS}(O)\operatorname{Tol}]_2(\operatorname{PPh}_3)_2$, orangegelbe Kristalle, Ausbeute 283 mg (95%), gef.: C, 54.47; H, 3.75. $\operatorname{C}_{54}\operatorname{H}_{44}\operatorname{O}_{10}\operatorname{P}_2\operatorname{Ru}_2\operatorname{S}_2$ (1181.15) ber.: C, 54.91; H, 3.75%.

Atom	x	у	z	B _{iso}
Ru1	0.24063(3)	0.46572(4)	0.31481(3)	2.49(3)
P1	0.22665(12)	0.45561(13)	0.42986(10)	2.81(9)
S 1	0.12685(12)	0.34329(13)	0.21018(10)	3.14(8)
01	0.1800(4)	0.3549(3)	0.2803(3)	3.4(3)
02	0.3428(4)	0.3868(4)	0.3401(3)	3.8(3)
03	0.0460(4)	0.3604(4)	0.2046(4)	4.3(3)
C1	0.1350(5)	0.2409(5)	0.1946(4)	3.6(4)
C2	0.0890(7)	0.1900(7)	0.2176(6)	5.1(5)
C3	0.0957(9)	0.1059(6)	0.2058(7)	6.2(7)
C4	0.1504(9)	0.0794(8)	0.1723(7)	6.7(7)
C5	0.1939(10)	0.1350(7)	0.1499(7)	7.0(7)
C6	0.1895(8)	0.2135(7)	0.1627(6)	6.0(6)
C7	0.1568(14)	-0.0108(9)	0.1620(10)	10.5(13)
C8	0.1821(5)	0.3672(5)	0.4559(4)	3.5(4)
C9	0.1247(7)	0.3265(7)	0.4081(5)	5.4(5)
C10	0.0890(8)	0.2556(9)	0.4271(7)	7.1(7)
C11	0.1087(7)	0.2348(7)	0.4957(7)	5.8(6)
C12	0.1626(7)	0.2792(7)	0.5436(6)	5.6(6)
C13	0.1996(7)	0.3454(6)	0.5235(5)	4.6(5)
C14	0.3192(5)	0.4669(5)	0.4968(4)	3.4(4)
C15	0.3820(7)	0.4186(8)	0.4957(6)	6.0(6)
C16	0.4528(8)	0.4254(12)	0.5478(7)	9.0(9)
C17	0.4615(7)	0.4773(9)	0.5994(7)	6.9(7)
C18	0.4006(10)	0.5231(9)	0.5995(7)	8.0(8)
C19	0.3293(8)	0.5204(8)	0.5507(6)	6.5(6)
C20	0.1650(5)	0.5384(5)	0.4452(4)	3.5(4)
C21	0.0913(7)	0.5248(7)	0.4538(8)	6.1(7)
C22	0.0479(9)	0.5890(9)	0.4665(10)	8.5(11)
C23	0.0731(9)	0.6655(8)	0.4638(9)	7.3(8)
C24	0.1437(9)	0.6797(7)	0.4535(7)	6.6(7)
C25	0.1903(7)	0.6157(6)	0.4445(6)	5.1(5)
C26	0.3011(5)	0.5570(6)	0.3381(5)	3.6(4)
O26	0.3383(5)	0.6137(5)	0.3537(4)	6.1(4)
C27	0.1505(6)	0.5262(5)	0.2868(5)	3.6(4)
O27	0.0936(5)	0.5633(5)	0.2701(4)	6.1(4)

Lageparameter und	äquivalente	isotrope	Temperaturparameter	der	Atome	in (6 (A	12/	'n)
-------------------	-------------	----------	---------------------	-----	-------	------	--------------	-----	-----

Röntgenstrukturanalyse von 6

 $C_{54}H_{55}O_{10}P_2Ru_2S_2$, M = 1181.15, Raumgruppe A2/n, Monoklin, a 17.602(2), b 16.659(2), c 20.534(2) Å, β 106.57(1)°, V 5774.6(10) Å³, Z = 4, $D_c = 1.442$ g cm⁻³, $2\Theta_{max} = 50^{\circ}$, 5073 unabhängige Reflexe, R = 6.0% für 3701 Reflexe, Lageparameter und äquivalente isotrope Temperaturfaktoren Tab. 5 $[I > 2.5\sigma(I)]$, Raumgruppe $P2_1/n$, Monoklin, a 17.566(1), b 15.539(1), c 37.889(4) Å, β 93.84(1)°, V10318.9(14) Å³, Z = 8, $D_c = 1.521$ g cm⁻³, $2\Theta_{max} = 50^{\circ}$, 18.143 unabhängige Reflexe, R = 5.2% für 8278 Reflexe, Lageparameter und äquivalente isotrope Temperaturfaktoren Tab. 6 $[I > 2.5\sigma(I)]$, $[R_w = 9.6\%, w^{-1} = \sigma^2(F_o^2) + 0.0021(F_o^2)]$ für beide Strukturen, Mo- K_{α} -Strahlung (Stoe-Siemens AED 2 Vierkreisdiffraktometer, Graphitmonochromator, $\lambda = 0.71073$ Å, die Daten wurden im ω/Θ -Betrieb aufgenommen. Die Strukturen wurden durch direkte Methoden mit sHELXS-86

Tabelle 5

Lageparameter und äquivalente isotrope Temperaturparameter der Atome in 6 $(P2_1/n)$

Atom	x	у	Z	B _{iso}
Molekül I				
Ru1	-0.73836(4)	-0.18568(5)	-0.100889(21)	2.55(3)
Ru2	-0.77565(4)	-0.35859(5)	-0.095574(20)	2.48(3)
P1	-0.71159(15)	-0.03479(16)	-0.11352(7)	2.86(11)
P2	-0.80469(15)	-0.51222(17)	-0.09779(7)	2.79(10)
S 1	-0.63632(15)	-0.31259(17)	-0.14412(7)	3.07(10)
S2	-0.87306(16)	-0.25909(18)	-0.15581(7)	3.49(11)
01	-0.6805(4)	-0.2321(4)	-0.14633(18)	3.2(3)
02	-0.6767(4)	-0.3787(4)	-0.12547(19)	4.0(3)
03	-0.5591(4)	-0.3010(6)	-0.13104(21)	4,9(4)
O4	-0.8341(4)	-0.1822(5)	-0.14041(19)	4.0(3)
O5	-0.8282(4)	-0.3375(4)	-0.14813(18)	3.8(3)
O6	-0.9503(4)	-0.2658(6)	-0.14703(22)	5.6(5)
C1	-0.6316(6)	-0.3516(6)	-0.18712(25)	3.1(4)
C2	-0.5883(8)	-0.3089(9)	-0.2102(3)	5.6(7)
C3	-0.5818(9)	-0.3443(12)	-0.2442(4)	7.5(9)
C4	-0.6122(9)	-0.4212(12)	-0.2539(4)	8.3(9)
C5	-0.6560(13)	-0.4607(11)	-0.2306(4)	9.8(12)
C6	-0.6645(10)	-0.4281(9)	-0.1970(3)	6.9(8)
C7	-0.5943(13)	-0.4598(17)	-0.2880(4)	13.5(16)
C8	-0.8725(6)	-0.2456(7)	-0.2022(3)	3.6(5)
C9	-0.8061(8)	-0.2142(10)	-0.2172(4)	6.1(7)
C10	-0.8091(8)	-0.2037(11)	-0.2520(3)	6.7(8)
C11	-0.8731(8)	-0.2182(10)	-0.2750(3)	5.8(7)
C12	-0.9381(7)	-0.2405(10)	-0.2592(3)	6.0(7)
C13	-0.9384(7)	-0.2549(9)	-0.2232(3)	5.2(6)
C14	-0.8715(10)	-0.2051(14)	-0.3137(4)	9.0(11)
C15	-0.6418(6)	0.0158(6)	-0.0819(3)	3 1(4)
C16	-0.6497(6)	0.0074(7)	-0.0454(3)	4 1(5)
C17	-0.6012(7)	0.0459(8)	-0.0211(3)	5.1(6)
C18	-0.5402(7)	0.0928(8)	-0.0319(3)	4.8(6)
C19	-0.5291(6)	0.1012(7)	- 0.0674(3)	4.3(5)
C20	-0.5804(6)	0.0641(6)	-0.0927(3)	3.5(5)
C21	-0.7940(6)	0.0374(6)	-0.1127(3)	3.1(4)
C22	-0.8658(7)	0.0061(7)	-0.1175(3)	4.4(5)
C23	-0.9278(8)	0.0611(9)	-0.1157(3)	5.5(6)
C24	-0.9192(7)	0.1425(9)	-0.1077(4)	5.8(7)
C25	-0.8470(9)	0.1756(9)	-0.1010(5)	8.0(10)
C26	-0.7838(9)	0.1234(8)	-0.1039(4)	6.8(8)
C27	-0.6752(7)	-0.0135(7)	-0.1564(3)	4.6(6)
C28	-0.7068(8)	0.0464(10)	-0.1798(4)	6.8(8)
C29	-0.6764(10)	0.0605(13)	-0.2125(4)	9.4(11)
C30	-0.6148(12)	0.0136(15)	-0.2214(5)	10.9(13)
C31	-0.5793(10)	-0.0450(10)	-0.1975(4)	8.2(10)
C32	-0.6105(8)	-0.0616(8)	-0.1646(4)	5.5(6)
C33	-0.8467(6)	-0.5547(7)	-0.1402(3)	3.6(5)
C34	-0.9108(7)	-0.5123(8)	-0.1556(3)	4.6(6)
C35	- 0.9498(9)	-0.5503(11)	-0.1850(3)	6.9(8)
C36	-0.9237(10)	-0.6242(12)	-0.1994(4)	8.0(9)
C37	- 0.8626(9)	-0.6636(12)	-0.1847(4)	7.7(9)
C38	-0.8209(8)	-0.6324(8)	-0.1547(3)	5.7(7)
C39	-0.7217(6)	-0.5832(6)	-0.0869(3)	3.3(4)
C40	-0.6552(7)	-0.5663(8)	-0.1003(3)	4.7(6)

Tabelle 6 (Fortsetzung)

Atom	x	у	Z	B _{iso}
C41	-0.5917(8)	-0.6186(9)	- 0.0926(4)	6.1(8)
C42	-0.5957(7)	-0.6866(8)	-0.0711(4)	5.6(7)
C43	-0.6635(8)	- 0.7059(9)	-0.0570(4)	7.0(8)
C44	- 0.7264(7)	- 0.6530(8)	-0.0639(4)	5.2(6)
C45	-0.8744(6)	- 0.5496(6)	-0.0670(3)	3.1(5)
C46	-0.9334(6)	-0.6028(7)	-0.0760(3)	3.9(5)
C47	-0.9790(7)	-0.6336(8)	-0.0504(3)	4.8(6)
C48	-0.9629(8)	-0.6100(8)	- 0.0149(4)	5.6(7)
C49	-0.9061(8)	-0.5562(8)	-0.0056(3)	5.2(6)
C50	-0.8598(7)	-0.5249(8)	-0.0310(3)	4.4(6)
C51	- 0.7969(6)	-0.1567(6)	- 0.0634(3)	3.6(5)
O51	-0.8297(5)	- 0.1374(6)	- 0.03985(22)	6.0(4)
C52	-0.6558(6)	-0.1958(6)	-0.0691(3)	3.0(4)
O52	-0.6012(4)	-0.2008(5)	-0.04957(21)	4.5(4)
C53	-0.8617(5)	-0.3325(6)	-0.0720(3)	3.0(4)
O53	-0.9137(4)	-0.3187(6)	-0.05702(22)	5.1(4)
C54	-0.7201(5)	-0.3653(7)	-0.0529(3)	3.2(4)
O54	-0.6858(5)	-0.3708(6)	-0.02652(20)	5.1(4)
Molekül II				
Ru1	0 27455(4)	0.67157(5)	0.087269(19)	2 25(3)
Ru2	0.23987(4)	0.84593(5)	0.086688(20)	2 36(3)
P1	0.30201(14)	0.51960(16)	0.000000(20)	2.30(3) 2 44(10)
P2	0.30201(14) 0.22016(15)	0.99902(17)	0.09564(7)	2.47(10) 2.82(11)
S1	0.38145(16)	0.78631(18)	0.09904(7)	334(11)
\$2	0.30143(10) 0.14340(15)	0.73072(16)	0.13751(7)	3.10(11)
01	0.3388(5)	0.7046(4)	0.13592(18)	4 1(4)
02	0.3416(4)	0.8577(4)	0.12112(19)	39(3)
03	0.4596(4)	0.7809(6)	0.12112(17) 0.13373(20)	4 9(4)
04	0.1846(5)	0.6588(5)	0.12253(20)	4 7(4)
05	0.1866(4)	0.8118(4)	0.13476(18)	3 7(3)
06	0.0658(5)	0.7361(6)	0 12338(22)	5 6(4)
CI	0.3771(6)	0.8104(7)	0.12530(22)	3 2(4)
\mathbf{C}^2	0.3475(7)	0.7521(8)	0.2089(3)	4 5(5)
C3	0.3444(7)	0 7738(9)	0.2443(3)	5.0(6)
C4	0.3744(7)	0.8496(9)	0.2577(3)	5 1(6)
C5	0.4036(9)	0.0470(7)	0.2333(4)	6 2(8)
C6	0.4064(7)	0.3910(8)	0.0569(3)	4.6(5)
C20	0.4340(6)	0.4267(7)	0.0810(3)	3 7(5)
C21	0.2213(6)	0.4269(6)	0.0016(3)	3 1(4)
C22	0.2286(6)	0.3618(8)	0.0754(5)	70(9)
C24	0.0986(8)	0.3331(8)	0.0850(4)	64(8)
C25	0.0885(7)	0.4136(9)	0.0969(4)	5 5(7)
C26	0.0003(7) 0.1482(7)	0.4695(8)	0.0909(4)	49(6)
C27	0.3409(5)	0.4965(6)	0.14230(25)	2 8(4)
C28	0.3058(7)	0.4/38(8)	0.1653(3)	2.0(4) A 6(6)
C29	0.3354(9)	0.4315(11)	0.1000(4)	7.0(9)
C30	0.4049(8)	0.4706(9)	0.1770(4)	6.0(7)
C31	0.4416(7)	0.5215(9)	0 1874(3)	5.0(6)
C32	0 4092(6)	0.5265(7)	0 1545(3)	3 9(5)
C33	0.1739(6)	1 0293(6)	0 1354(3)	3 1(4)
C34	0.1994(8)	0.9876(8)	0 1667(3)	4 7(6)
C35	0.1690(9)	1.0088(9)	0.1977(4)	5 4(8)
C36	0.1136(9)	1.0724(10)	0 1991(3)	6 7(8)
C37	0.0873(9)	1.1139(10)	0.1687(4)	7.0(8)

Atom	x	у	Z	B _{iso}
C38	0.1186(8)	1.0934(8)	0.1364(3)	5.3(6)
C39	0.3069(6)	1.0651(6)	0.0995(3)	3.0(4)
C40	0.3054(7)	1.1470(8)	0.1134(3)	4.6(6)
C41	0.3676(9)	1.2009(8)	0.1126(4)	6.2(7)
C42	0.4320(7)	1.1738(8)	0.0956(4)	5.2(6)
C43	0.4353(6)	1.0931(8)	0.0830(4)	5.5(7)
C44	0.3721(6)	1.0385(7)	0.0851(3)	4.5(6)
C45	0.1661(6)	1.0492(6)	0.0587(3)	3.5(5)
C46	0.0850(7)	1.0418(8)	0.0545(4)	5.2(7)
C47	0.0454(8)	1.0782(9)	0.0255(4)	6.5(7)
C48	0.0839(10)	1.1211(10)	0.0015(4)	8.3(9)
C49	0.1632(10)	1.1243(12)	0.0039(4)	7.7(9)
C50	0.1987(7)	1.0912(9)	0.0315(4)	5.8(7)
C51	0.2122(5)	0.6543(6)	0.0466(3)	2.8(4)
O51	0.1730(5)	0.6427(6)	0.02215(19)	5.1(4)
C52	0.3551(5)	0.6875(6)	0.0600(3)	3.0(4)
O52	0.4064(4)	0.6993(5)	0.04290(21)	4.6(4)
C53	0.1526(6)	0.8335(6)	0.0586(3)	3.7(5)
O53	0.0960(4)	0.8244(5)	0.04070(23)	5.2(4)
C54	0.2867(6)	0.8620(7)	0.0465(3)	3.6(5)
O54	0.3183(5)	0.8720(6)	0.01987(21)	5.3(4)

Tabelle 6 (Fortsetzung)

[14] gelöst und mit Hilfe von NRCVAX [15] verfeinert. Die Strukturdarstellungen wurden mit SCHAKAL 88B [16] angefertigt.

Dank

Wir danken dem Schweizerischen Nationalfond zur Förderung der wissenschaftlichen Forschung für die Unterstützung dieser Arbeit. Dem Johnson-Matthey Technology Centre danken wir für die Überlassung von Ruthenium(III)chlorid-hydrat. Herrn Prof. A. v. Zelewsky und Frau Dr. C. Bobillier, Institut für Anorganische Chemie der Universität Freiburg (Schweiz) sind wir für die Aufnahme von ¹⁹F-NMR-Spektren zu Dank verpflichtet.

Literatur

- 1 G.R. Crooks, B.F.G. Johnson, J. Lewis, I.G. Williams und G. Gamlen, J. Chem. Soc. (A), (1969) 2761.
- 2 H. Schumann, J. Opitz und J. Pickart, J. Organomet. Chem., 128 (1977) 253.
- 3 G. Süss-Fink, G. Herrmann, P. Morys, J. Ellermann und A. Veit, J. Organomet. Chem., 284 (1985) 263.
- 4 M. Rotem, I. Goldberg, U. Shmueli und Y. Shvo, J. Organomet. Chem., 314 (1986) 185.
- 5 M. Spohn, T. Vogt und J. Strähle, Z. Naturforsch., Teil B, 41 (1986) 1373.
- 6 M. Bianchi, P. Frediani, U. Matteoli, G. Menchi, F. Piacenti und G. Petrucci, J. Organomet. Chem., 259 (1983) 207.
- 7 G.F. Schmidt und G. Süss-Fink, J. Organomet. Chem., 362 (1986) 179.
- 8 U. Matteoli, G. Menchi, P. Frediani, M. Bianchi und F. Piacenti, J. Organomet. Chem., 285 (1985) 281.
- 9 J.A. Cabeza, C. Landaruzzi, L.A. Oro, A. Tiripicchio und M. Tiripicchio-Camellini, J. Organomet. Chem., 322 (1987) C16.

- 10 F. Neumann und G. Süss-Fink, J. Organomet. Chem., 367 (1989) 175.
- 11 F. Neumann, H. Stoeckli-Evans und G. Süss-Fink, J. Organomet. Chem., 379 (1989) 139.
- 12 D.S. Bohle und H. Vahrenkamp, Inorg. Chem., 29 (1990) 1097.
- 13 H. Schumann und J. Opitz, Chem. Ber., 128 (1990) 1385.
- 14 G.M. Sheldrick, SHELXS-86, Program for Crystal Structure Determination, Universität Göttingen, FRG, 1986.
- 15 E.J. Gabe, Y. Le Page, J-P. Charland und F.L. Lee, NRCVAX-An interactive Program System for Structure Analysis, J. Appl. Crystallogr., 22 (1989) 384.
- 16 E. Keller, SCHAKAL 88B, A FORTRAN Program for the Graphical Representation of Molecular and Crystallographic Models, Kristallographisches Institut der Universität Freiburg, FRG, 1990.